LK-99,一种2周多以前被韩国量子能源研究中心公司团队及相关团队宣称能够实现室温超导的神奇材料,其神线分,位于德国斯图加特的马克斯普朗克固体研究所的科学家帕斯卡·普帕尔(Pascal Puphal)提交的预印本论文,可能完成了对LK-99的“
”。该论文称,他们成功合成了不含硫化亚铜杂质的紫色透明的LK-99单晶体样品,经测定,排除其超导的可能性。
此外,当地时间8月16日,国际学术期刊《自然》(Nature)官网发布新闻,“LK-99不是超导体——科学侦探们如何解开这个谜团”,梳理了今年夏天这一最热闹的科学事件,以及人们的反思。
LK-99是一种铜掺杂铅磷灰石材料。前述新闻文章称,现在,经过数十次复制努力,许多专家自信地说,证据表明LK-99不是室温超导体。
前述文章由美国科学记者、自由撰稿人丹尼尔·加里斯托(Daniel Garisto)撰写。他写道,世界不同地区和实验室科学家对LK-99的复制验证实验与研究工作,一同拼凑出了“为什么这个材料表现出类似超导行为”这一谜团的答案。
2周多以前,7月22日上午,两篇宣称LK-99能够在“室温+常压”条件下超导的论文先后在预印本网站arXiv上公开。这是一种铜掺杂铅磷灰石材料,其成分为Pb10-xCux(PO4)6O (0.9>
LK-99呈现出的特性——在磁铁上方半悬浮,电阻率在特定温度时突然下降,让人们惊呼:难道它真的是全世界首款室温常压超导材料?虽然预印本论文是未经同行评议、尚未正式发表的论文,但前述论文中的说法和金铉德此后公布的LK-99在磁体上“半悬浮”的视频很快传遍网络,并引爆学术界和社会。
在转变温度Tc以下呈现出零电阻和完全抗磁性是超导体的两个重要特性。但韩国团队在论文中公布的实验数据被认为不足以证明LK-99系超导体,因而受到质疑。国际上多个研究团队尝试合成LK-99,以验证其实验结果。
中文互联网网站抖音和哔哩哔哩(B站)上甚至分别出现了宣称实现LK-99样品完全磁悬浮的视频,引起人们关注和转发。但随后相关视频发布者澄清称,系杜撰,并非LK-99样品。
(DFT),确定了其在费米级上相关的孤立平带,“这是已建立的超导体家族中高转变温度的共同特征。”该论文称,如果铜离子取代铅离子的位置合适,相关化合物可以显示出高温超导体的许多关键特征。
但7月31日16时13分,北京航空航天大学材料科学与工程学院刘知琪教授团队在预印本网站arXiv上提交论文称,他们根据韩国团队公布的方法合成了LK-99样品,没有发现其具有超导性。相关样品在室温下置于磁体顶部时,也没有观察到磁悬浮现象。该材料在室温下的电阻不为零。
8月2日14时59分,东南大学物理学院教授、博士生导师孙悦在预印本网站arXiv提交论文称,6片样品中的1片样品在100K(零下173.15摄氏度)以上温度时,测得零电阻,但没有抗磁性。
8月6日13时34分,北京大学量子材料科学中心(ICQM)科研人员在预印本网站arXiv提交论文称,虽然在一些片状的小碎片LK-99样品中成功地观测到了“磁半悬浮”现象,但经测量,其样品中不存在迈斯纳效应或零电阻,因此不具有超导性。实验结果表明,其样品含有软铁磁成分。
由美国普林斯顿大学物理系、化学系,美国俄勒冈大学化学与生物化学系,德国马克斯·普朗克固体化学物理学研究所等机构的科研人员联合完成,并于8月9日提交的一篇预印本论文称,研究团队合成了LK-99样品,呈透明状,分析结果表明,该LK-99样品没有表现出高温超导性;铜的替代在热力学上是非常不利的;LK-99更有可能是磁体,而不是室温常压超导体。
他们进行X射线样品的结构,并依此进行严格的计算。结果表明,LK-99中的“平带”来自强局域电子,无法按照超导体所需的方式“跳跃”。
每“烧制”1份铜掺杂磷酸铅晶体(纯LK-99),就会产生17份铜和5份硫。这些残留物会产生大量杂质,尤其是硫化亚铜。韩国团队在其论文中报告了这种情况。
韩国团队同时在预印本中指出,在一个特定温度下,LK-99的电阻率下降了十倍。美国伊利诺伊大学厄巴纳-香槟分校化学家普拉尚特·詹恩(Prashant Jain)向《自然》新闻表示,“104.8摄氏度,我当时想,等一下,我知道这个温度。”104摄氏度是硫化亚铜发生相变的温度。低于该温度时,硫化亚铜的电阻率急剧下降,这一现象几乎与LK-99所谓的超导相变相同。
稍早前,8月8日15时59分,中国科学院物理研究所研究员、博士生导师雒(luò)建林团队提交预印本论文,明确提出,“我们认为,LK-99中所谓的超导行为很可能是由于硫化亚铜在385K(111.85摄氏度)左右发生一阶结构相变,从高温下的β相变为低温下的γ相,从而导致电阻率降低。”
他们在实验中“烧制”了不同硫化亚铜含量的两种LK-99,分别测量其电阻、抗磁性等参数,并与纯硫化亚铜的相应参数进行对比。
雒建林告诉记者,LK-99不超导!实验结果表明,LK-99能常压室温超导是假象,这一假象来源于硫化亚铜。他们的工作指出了韩国团队把LK-99错认成超导体的原因。
”或许来自完全不含硫化亚铜杂质的晶体样品。8月11日17时47分,德国马克斯普朗克固体研究所的科学家帕斯卡·普帕尔(Pascal Puphal)提交预印本论文称,成功合成了LK-99单晶体,实验结果排除了该晶体样品存在超导电性的可能性。X射线分析显示,铜在整个样品中分布不均。
铜取代的不均匀分布所造成。实验结果表明,之前声称的LK-99中存在室温超导现象的可能性很小。
对于前述LK-99单晶体样品的制备方法,该论文称,前驱体粉末是由9PbO :1CuO 和9NH4H2PO4混合而成。随后,将粉末进行20分钟的球磨,并将混合物装入氧化铝坩埚中转移到炉中,然后加热至750摄氏度,持续10小时,接着进行研磨,再加热10小时。将烧结材料填充到橡胶模中,用球磨法制备出圆柱形的进料棒和种子棒。橡胶是用Riken型S1-120型7万牛顿压力机在充满水的不锈钢模具中进行抽真空和压制。所有棒材均在 800摄氏度下进行热处理。第一次生长过程中,使用Riken压力机在直径为4毫米的压模中制备颗粒。单晶生长在晶体系统公司的光学图像炉CSC FZ-T-10000中进行。四盏功率为150瓦的卤素灯作为加热源。
研究团队使用一种被称为浮区晶体生长的技术,避免将硫引入LK-99样品中。他们合成的Lk-99晶体透明,呈紫色。其电阻高达数百万欧姆,显示出轻微的铁磁性和抗磁性,但不足以实现部分悬浮。
研究小组认为,LK-99中看到的超导性迹象可归因于硫化亚铜杂质。而他们制备的LK-99晶体中不含有硫化亚铜杂质。
帕斯卡·普帕尔向《自然》新闻表示,“这个故事准确地说明了为什么我们需要单晶,”“当我们拥有单晶时,我们可以清楚地研究系统的内在特性。”
马克斯·普朗克固体研究所官网对帕斯卡·普帕尔介绍称,“我是使用各种技术进行单晶生长的专家,特别关注高压下的生长,例如浮区-、水热-、助熔剂-和布里奇曼增生长。”“我正在研究不同的量子自旋系统,目前专注于超导体,但仍在继续进行拓扑系统、低维磁体和受挫磁性方面的项目。”
据《自然》新闻报道,美国新泽西州普林斯顿大学的固态化学家莱斯利·肖普(Leslie Schoop)是美国和欧洲联合团队关于LK-99研究预印本论文的作者之一。她向《自然》新闻表示,“甚至在 LK-99之前,我就一直在谈论如何小心使用DFT,现在我为下个暑期学校准备了一个最好的故事。”
,于1951年发表。澳大利亚墨尔本莫纳什大学的物理学家迈克尔·富勒 (Michael Fuhrer) 向《自然》新闻表示,唯一
将来自韩国团队分享他们的样品。他说,“他们有责任说服其他人。”但对于LK-99能室温超导的说法,美国加州大学戴维斯分校物理与天文系副教授、凝聚态物质实验专家因娜·维希克表示,她认为,这件事已经
了。1986年,当铜氧化物超导体被发现时,人们立即开始探索其特性。但近四十年后,人们对这种材料的超导机制仍然存在争议。与此相比,解释LK-99的努力水到渠成。因娜·维希克表示,将LK-99原始观测结果的所有片段整合在一起的“侦查工作”,“我认为真是太棒了,而且比较